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Abstract. In order to explore the possibility of a timbre-based rhythm
theory, a drum pattern classification system was developed, which is ca-
pable of describing the internal structure of a drum groove in a stochastic
way. Using an onset detection algorithm, timbral features were extracted
at every drum onset of the sample file. Next, a Hidden Markov Model
(HMM) was fitted to the data. Local decoding of the model showed that
the rate of correct classifications lies at 100 % when examining plain
samples and decreases with advancing musical complexity. Furthermore,
similar sounds were decoded di↵erently.

1 Introduction

Todays common theories concerning musical rhythm fall short of taking its most
prominent feature into account. They fail to describe rhythm in terms of sound.
Modern popular music is built upon the fundamental concept of groove, which
is established by di↵erent instruments, each having a specific timbre, playing
together, but not necessarily at the same beats (Bader & Markuse, 1994). As-
suming this, groove can be viewed as succession of distinct timbres, each a↵ecting
the following. Given rhythm works like this, a rhythm theory for analytical and
composing tasks is needed, which is able to describe groove as a progression
of timbral events. Since drum sets contribute a large part to groove in popular
music, the first step towards a timbre-based rhythm theory was the development
of a model capable of handling the sounds of a drum set before going into detail
with multi-instrumental composition.

2 Onset Detector

The first thing to do was to develop an onset detection algorithm which is
able to return the position of note onsets within a musical signal. In this ap-
proach, the normalized input signal is subdivided into N sections S of length l.
Each section is then transformed to a pseudo-phase-space by setting up a two-
dimensional mesh grid. The number of boxes the grid has is determined by the
parameter m. The pseudo-phase-space of section Si is then the set of coordinates
P(Si) = {(x

0

, x
0+d), . . . , (xk�d, xk)}, xk 2 Si being the kth frame of Si and d 2 N

specifying a delay of the index. Each coordinate lies in exactly one of the grid’s
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boxes. The sum of points in each box is counted and divided by the total number
of points, so that to each box a probability pj is assigned. With these probabili-
ties the information entropy can be calculated as H(Si) = � 1

logm

Pm
j=0

pj log pj .
After iterating over each section, the resulting list of entropy values mirrors the
informational progression of the sample. Because of the chaotic behavior of tran-
sients, an onset shows up as a positive shift of entropy. Therefore it is assumed,
that the local maxima in the list of entropy values are musical onsets. However,
the parameters l, m and d have to be reset appropriately for every single sample
file.

3 Timbral Features

Perception of timbre is essentially multi-dimensional (Grey & Moorer, 1977).
Therefore, it can be viewed as a feature space comprising at least a spatial and a
temporal dimension (Bader, 2013). In this approach, timbre was reduced to the
perceptual dimension of brightness so as to handle it one-dimensionally. Bright-
ness strongly correlates with the spectral centroid, which then was extracted at
each onset position.

4 Trainig data

The sample data used are solo drum sections of Pop, Rock and Electro pieces.
The pieces were fed to the system as 16 Bit PCM wave audio files, mono and
of 44100 Hz sampling rate. The length of each sample ranges between 10 and
20 seconds. Additionally, one sample was synthesized in order to have a simple
drum pattern with only one sound at the same time. This sample was generated
using the Dance Kit of the Drum Kit selection of Apple’s Garage Band.

5 The Hiddden Markov Model

Hidden Markov Models have widely been used in the scope of computational
musicology (Temperley, 2007). The model proposed here comprises an m-state
Markov Chain as unobserved state-dependent process and a Poisson Mixture
Model as state-dependent process (Zucchini, 2009). For every sample, a Hidden
Markov Model was trained on the corresponding spectral centroid data. The
centroid values are assumed to be produced by a Poisson distribution of mean �i,
each specifying a distinct timbral event. Note that, although the HMM’s states
are interpreted as instruments of the drum set in this paper, it is generally not
assumed that each state corresponds to a distinct instrument. The transition
probability matrix (t.p.m.) and the vector of means � were estimated by direct
maximization of the discrete log-likelihood, using the R programming language.
Initial values for � are chosen to evenly space the range between the minimal and
maximal spectral centroid. The t.pm. is initialized with relatively large values on
the main diagonal and values close to zero at the remaining positions. The result



is a stochastic model of the samples rhythm described by means of its timbral
progression. Local decoding of the model given the input data can be used to
evaluate the model’s goodness of fit. Furthermore, it is possible to sample a new
time series of states from the model. Using an midi interface, a new grooves were
generated, which resembles the original.

6 Results

The onset detecting performance goes up to 100 % when computing drum-only
samples and diminishes with increasing musical complexity. Expectedly, most
sounds were decoded according to the auditory impression, e.g all base drum
sounds were subsumed under the same state, whereas all hi-hat beats were de-
coded to another. Furthermore, some surprising results could be observed. When
applying an HMM to a sample that has less sounds involved than the HMM has
states, it appears that two states are assigned to the same sound. Figure 1 dis-
plays the waveform of the synthesized sample, with the vertical bars marking
the detected positions of onsets in the time series. To each of the HMM’s states
a color is assigned, with purple and yellow representing the hi-hat. One can see
that hi-hat beats are consistently decoded to two di↵erent states regarding their
metrical position. A reasonable interpretation could then define state purple as
“hi-hat on ‘two and’ ” and state yellow as “End of figure hi-hat”. Furthermore,
silence is also recognized as a timbral event, represented by state 1.

Fig. 1. The local decoding of this 4-state HMM shows how two similar sounds are
distinguished regarding their position with the audio sample. State 1: Silence, State 2:
Bass Drum, State 3: Snare, State 4: hi-hat on 2+, State 5: ‘End of figure’ hi-hat.



7 Conclusion

The model organizes similar sounds to di↵erent states, at the first glances, by
means of their metrical position. Since the model does not learn any time related
data, there have several hi-hat sounds to be involved. Although the sample was
produced with only one hi-hat sound, a closer look at the wave form suggests
that there is a di↵erence in sound between state 4 and state 5 hi-hats. However,
the di↵erence was not audible. This could be explained by a slight overlap of
the bass drum and hi-hat sounds, adding low frequencies to the spectral cen-
troid measurement at each hi-hat onset following a bass drum. This indicates
that the model is capable of detecting even subtle distinctions of sound. Never-
theless, both hi-hat states are not distributed randomly in the sample. Each is
obtained on a designated metrical position. Therefore, a distinction in terms of
position happens even though only timbral features were computed. Enhancing
this model, a system is possible showing how instruments of a drums are played
di↵erently regarding their position within a bar. Furthermore, this could lead to
a detection method of playing styles.
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