AGWAN: A Generative Model for Labelled, Weighted Graphs

Michael Davis, Weiru Liu, and Paul Miller

Centre for Secure Information Technologies (CSIT),
School of Electronics, Electrical Engineering and Computer Science,
Queen’s University, Belfast, United Kingdom
{mdavis05, w.liu}@qub.ac.uk, p.miller@ecit.qub.ac.uk

Abstract. Real-world graphs or networks tend to exhibit a well-known set of
properties, such as heavy-tailed degree distributions, clustering and community
formation. Much effort has been directed into creating realistic and tractable mod-
els for unlabelled graphs, which has yielded insights into graph structure and
evolution. Recently, attention has moved to creating models for labelled graphs:
many real-world graphs are labelled with both discrete and numeric attributes.
In this paper, we present AGWAN (Attribute Graphs: Weighted and Numeric), a
generative model for random graphs with discrete labels and weighted edges. The
model is easily generalised to edges labelled with an arbitrary number of numeric
attributes. We include algorithms for fitting the parameters of the AGWAN model
to real-world graphs and for generating random graphs from the model. Using
the Enron “who communicates with whom” social graph, we compare our ap-
proach to state-of-the-art random labelled graph generators and draw conclusions
about the contribution of discrete vertex labels and edge weights to the structure
of real-world graphs.

Keywords: Network models, graph generators, random graphs, labelled graphs,
weighted graphs, graph mining

1 Introduction

Network analysis is concerned with finding patterns and anomalies in real-world graphs,
such as social networks, computer and communication networks, or biological and eco-
logical processes. Real graphs exhibit a number of interesting structural and evolution-
ary properties, such as power-law or log-normal degree distribution, small diameter,
shrinking diameter, and the Densification Power Law [4, 13, 15].

Besides discovering network properties, researchers are interested in the mecha-
nisms of network formation. Generative graph models provide an abstraction of how
graphs form; if the model is accurate, generated graphs will obey the same properties
as real graphs. Generated graphs are also useful for simulation experiments, hypothesis
testing and making predictions about graph evolution or missing graph elements. Most
existing models are for unlabelled, unweighted graphs [4, 13]; a generative model for
random graphs with discrete labels has recently been proposed [11].

In this paper, we present AGWAN, a generative model for labelled, weighted graphs.
Weights are commonly used to represent the number of occurrences of each edge: the

number of e-mails sent between individuals in a social network [1]; the number of calls
to a subroutine in a software call graph [6]; or the number of people walking between a
pair of door sensors in a building access control network [5]. In other applications, the
edge weight may represent continuous values: donation amounts in a bipartite graph of
donors and political candidates [1]; distance or speed in a transportation network [6]; or
elapsed time between the sensors in the building network [5]. In some cases, the weight
is a multi-dimensional feature vector [5, 6].

Our main motivation for this work is to create a model to better understand the laws
governing the relationship between graph structure and numeric labels or weights. Fur-
thermore, we want to be able to create realistic random, labelled, weighted graphs for
large-scale simulation experiments for our pattern discovery algorithms [5]. Our exper-
iments in §5 show the extent to which various graph properties are related to labels and
weights, and measure exactly how “realistic” our random graphs are. Graphs generated
with AGWAN are shown to have more realistic degree strength distributions and spectral
properties than the comparative methods.

This paper is arranged as follows: §2 is an overview of generative graph models; §3
presents AGWAN, our generative model for weighted and numeric labelled graphs. We
include a fitting algorithm to learn AGWAN’s parameters from a real input graph, and
an algorithm to generate random graphs from the model. §4 gives an overview of the
Enron “who communicates with whom” social graph that we use in the experiments,
and outlines the statistical measures and tests that we use to evaluate the generated
graphs. The experiments in §5 demonstrate that the vertex labels and edge weights of a
graph can predict the graph structure with high accuracy. Conclusions are in §6.

2 Related Work

Our understanding of the mathematical properties of graph structure was pioneered by
Paul Erd6s and Alfréd Rényi [7]. Graph formation is modelled as a Bernoulli process,
parameterised by the number of vertices and a wiring probability between each vertex
pair. While it has been essential to our understanding of component sizes and expected
diameter, the Erdds-Rényi model does not explain other important properties of real-
world graphs such as degree distribution, transitivity and clustering [4, 15].

Barabasi and Albert’s Preferential Attachment model [2] uses the “rich get richer”
principle to grow graphs from a few vertices up to the desired size. The probability
of an edge is proportional to the number of edges already connected to a vertex. This
generates graphs with power-law degree distributions. A number of variants of Prefer-
ential Attachment have been proposed [4, 15]; notably, the Forest Fire model [14] which
exhibits the Densification Power Law and shrinking diameter effect. Still, Preferential
Attachment models lack some desired properties, such as community structure.

The RMat algorithm [4] solves the community structure problem with its recursive
matrix approach. RMat graphs consist of 2" vertices and E edges, with four probabilities
a,b,c,d to determine in which quadrant of the adjacency matrix each edge falls. These
parameters allow the specification of power-law or log-normal degree distributions; if
a =b = c =d, the result will be an Erd6s-Rényi graph. However, RMat does not model
the Densification Power Law and shrinking diameter effect.

Kronecker Graphs [13] are a generalisation of RMat graphs which fulfil all the prop-
erties mentioned above. The model starts with an initiator matrix. Kronecker (Tensor)
multipication is recursively applied to yield the final adjacency matrix of the desired
size. This work synthesises the previous work in random graphs in a very elegant way
and proves that RMat graphs are a special case of Stochastic Kronecker graphs. While
they fulfil the desired structural properties, Kronecker Graphs are unlabelled.

The Multiplicative Attribute Graph (MAG) model [11] is a generative model for
labelled graphs. MAG is parameterised by the number of vertices, a set of prior proba-
bilities for vertex label values and a set of affinity matrices specifying the probability of
an edge conditioned on the vertex labels. The affinity matrices can be learned from real
graphs using Maximum Likelihood Estimation [10]. [11] proves that Kronecker Graphs
are a special case of MAG graphs, and that suitably-parameterized MAG graphs fulfil
all the desired properties: log-normal or power-law degree distribution, small diameter,
the existence of a unique giant component and the Densification Power Law. The MAG
model considers discrete vertex labels only. We believe that our method, described in
the next section, is the first generative model to include numeric labels or weights.

3 AGWAN: A Generative Model for Labelled, Weighted Graphs

In this section, we present our generative model, AGWAN (Attribute Graph: Weighted
and Numeric). The model is illustrated in Fig. 1 for the Enron graph described in §4.

Consider a graph G = (V, E)) with discrete vertex label values drawn from a set L. In
Fig. 1, u,v € V are vertices and wy,,, w,,, € R are edge weights. Edges e € E are specified
as a 3-tuple (u,v,wy,). In the discussion which follows, we restrict ourselves to a single
label on each vertex; we outline how this can be extended to multiple labels in §3.3.

We assume that the edge weights W/ = {w; ;} follow an arbitrary probability dis-
tribution. W* may be Gaussian, if it is drawn from an independent and identically dis-
tributed random variable such as speed, elapsed time, or amounts of money. If W/ rep-
resents the number of events occurring in a fixed interval of time—number of e-mails
sent or number of people moving between sensors—it is expected to follow a Pois-
son distribution. Other quantities—frequency of word use or number of papers written
by scientists—follow a power-law distribution [15]. In many cases, W/ arises from
multiple processes. As the underlying distribution is unknown, we model Wi/ using a
Gaussian Mixture Model (GMM) with an arbitrary number of mixtures. This provides
a reasonable approximation to any general probability distribution. We avoid the prob-
lem of knowing the “correct” number of mixtures by assuming that W% consists of an
infinite number of mixtures and using variational inference to determine the optimal
number for our model [3].

The AGWAN model is parameterised by u, a set of prior probabilities over L; and
O, a set of edge weight mixture parameters: @ = {Q/|i, j € L}. For directed graphs,
|@| = |L|* and we need to generate both w,, and w,, (see Fig. 1). For undirected graphs,
QU =QJi 50 |0| = O(|L*/2) and wy;, = Wy

For each combination of vertex attributes (i, j), the corresponding mixture model
QU parameterises the distribution of edge weights (with an edge weight of 0 indicating
no edge). Q% is a GMM with M mixtures:

Vertex label M (prior)

0 CEO 0.0256
| Director 0.1445
3 Laywer 0.0194
5 MD 0.0319
6 President 0.0256
7 Trader 0.0694
8 VP 0.1695

4 Manager 2 Employee
w

Fig. 1: AGWAN parameters. Vertex labels are selected according to prior probability u. Edge
weight wy,, is selected from mixture model Q%2 and w, is selected from mixture model Q24.

M—1
QY=Y ol -nu, (i) (1)

m=0

where a),l,{ is the weight of each mixture and n(,u,l;,j, (62)%) is the Gaussian PDF with
mean u,';{ and variance (02)%. The mixture weights form a probability distribution over
the mixtures: 1”"{;01 o = 1. We can specify Q2% such that the first mixture encodes
the probability of no edge: ol =1- P(eij), where P(e;;) is the probability of an edge
between pairs of vertices with labels (i, j). The model degenerates to an unweighted
graph if there are two mixtures, 1o(0,0) and 1, (1,0). Furthermore, if the weights ;)
are the same for all (i, j), the model degenerates to an Erdés-Rényi random graph.

3.1 Graph Generation

Algorithm 1 describes how to generate a random graph using AGWAN(N, L, i, ®). The
number of vertices in the generated graph is specified by N. After assigning discrete
label values to each vertex (lines 2-3, ¢f. Fig. 1), the algorithm checks each vertex pair
(u,v) for the occurrence of an edge (lines 4-7). If m = 0, (u,v) is not an edge (line 7). If
there is an edge, we assign its weight from mixture m (lines 8-9). The generated graph
is returned as G = (V, E).

3.2 Parameter Fitting

To create realistic random graphs, we need to learn the parameters 1, ® from a real-
world input graph G. Let W'/ be the set of edge weights between pairs of vertices with
labels (i, j). During parameter fitting, we want to create a model Q% for each W in G.
Each GMM Q' has a finite number of mixtures M. If M is known, Q¥ can be estimated
using Expectation Maximisation [9]. However, not only is M unknown, but we expect
that it will be different for each Q%/ within a given graph model [5].

We solve this problem by modelling 2%/ as a non-parametric mixture model with
an unbounded number of mixtures: a Dirichlet Process Gaussian Mixture Model [3]

Algorithm 1 AGWAN Graph Generation

Require: N (no. of vertices), L (set of discrete label values), it (prior distribution over L),
© = {Q/} (set of mixture models)
1: Create vertex set V of cardinality N, edge set E =0
2: forallu cV do
3: Assign discrete label [, € L from prior
4: forallu,veV:u#vdo
5 i=l,j=1,
6 Select Gaussian m uniformly at random from Q%
7: if m # 0 then N
8: L
9

Assign edge weight wy,, uniformly at random from 7 (/.L,',{ NGRS
: Create edge e = (u,v,wy,) ,E = EU{e}
return G = (V,E)

(DPGMM). “Non-parametric” does not mean that the model has no parameters; rather,
the number of parameters is allowed to grow as more data are observed. In essence, the
DPGMM is a probability distribution over the probability distributions of the model.

The Dirichlet Process (DP) over edge weights W/ is a stochastic process DP(ot, Hy),
where « is a positive scaling parameter and H is a finite measure on W¥. If we draw
a sample from DP(a,Hp), the result is a random distribution over values drawn from
Hy. This distribution H is discrete, represented as an infinite sum of atomic measures.
If Hy is continuous, then the infinite set of probabilities corresponding to the frequency
of each possible value that H can return are distributed according to a stick-breaking
process. The stick-breaking representation of H is given as:

m—1 b ..
ox) [T - o) H=Y) o(x)d,)
n=1

n=1

where {n/,n5,...} are the atoms representing the mixture components. We learn the
mixture parameters using the variational inference algorithm for generating Dirichlet
Process Mixtures described in [3]. The weights of each component are generated one-
at-a-time by the stick-breaking process, which tends to return the components with the
largest weights first. In our experiments, the first 3—5 mixtures accounted for over 99%
of the data. Mixtures with weights summing to less than 0.01 are dropped from the
model, and the remaining weights { @, } are normalised.

Algorithm 2 is the algorithm for AGWAN parameter fitting. First, we estimate the
vertex priors (lines 1-3). Next, we sample the edge weights for each possible combi-
nation of vertex label values, with no edge counting as a weight of zero (lines 4-7).
Finally, we estimate the GMMs Q// from the appropriate set of samples W/ using the
the stick-breaking process described above.

3.3 Extending AGWAN to multiple attributes

We have presented AGWAN for a single discrete vertex label and a single numeric edge
label (the weight). Many graphs have multiple labels on vertices and edges. AGWAN can
be extended to multiple numeric edge labels by generalising the concept of edge weight
to k dimensions. In this case, the mean of each mixture becomes a k-dimensional vector

Algorithm 2 AGWAN Parameter Fitting
Require: Input graph G = (V,E)
1: L= {discrete vertex label values}, d = |L|

count (l)+a

2: Calculate vertex label priors, apply Laplace smoothing VI € L: P(I) = Ntod
3: u = the normalised probability distribution over L such that Y¢_, P(l;) = 1
4: Vi, jeL:Wi=0
5: forallu,veV:u#vdo
6: i=l,j=1,
7: Wi = Wi U{w,} > If (u,v) is not an edge, then wy,, has value zero
8: foralli,j e Ldo
9: estimate Q'/ from W/ using variational inference
10: @ ={QV}
return i,

and the variance (oy;) is replaced with the k x k covariance matrix X, . The variational
algorithm can be accelerated for higher-dimensional data using a kd-tree [12] and has
been demonstrated to work efficiently on datasets of hundreds of dimensions.

A more difficult question is how to extend the model to multiple discrete vertex la-
bels. With even a small number of labels, modelling the full joint probability across all
possible combinations of label values becomes a complex combinatorial problem with
hundreds or thousands of parameters. The MAG model reduces this complexity by as-
suming that vertex labels are independent, so edge probabilities can be computed as
the product of the probabilities from each label [11]. For latent attributes, MAGFIT en-
forces independendence by regularising the variational parameters using mutual infor-
mation [10]. However, the MAG model has not solved this problem for real attributes,
where independence cannot be assumed. Furthermore, multiplying the probabilities sets
an upper limit (proportional to log N) on the number of attributes which can be used in
the model. In our experiments (§5), using three latent attributes created a less accurate
model than using two.

An alternative to multiplying independent probabilities is to calculate the GMM for
each edge as the weighted summation of the GMM for each individual attribute; it is
likely that some attributes have a large influence on graph structure while others affect
it little or not at all. This problem remains a topic for further research; see §6.

4 Experiments

We evaluate our approach by comparing AGWAN with the state-of-the-art in labelled
graph generation, represented by the MAG model [10, 11]. We learn the AGWAN and
MAG model parameters from a real-world graph. We then generate random graphs from
each model and calculate a series of statistics on each graph. These statistics are used
to compare how closely the model maps to the input graph.

For our input graph, we use the “who communicates with whom” graph of the En-
ron e-mail corpus [1] (Fig. 2). The graph has 159 vertices representing Enron’s senior
employees and 2667 edges representing e-mail communications sent between them.
Vertices have a single discrete label which describes the job role of the employee.

The edges are weighted according to the
number of e-mails sent between each pair
of employees. As e-mail communications are
not symmetric, the edges are directed.

We evaluated AGWAN against the follow-
ing models:
Erdds-Rényi random graph (ER): The ER
model G(n,p) has two parameters. We set
the number of vertices n = 159 and the edge
probability p = 0.106 to match the input
graph as closely as possible. We do not expect
a very close fit, but the ER model provides a
useful baseline.
MAG with real attributes (MAG-R1): The
MAG model with one real attribute is similar s
to AGWAN with one real attribute, with the
difference that ©@ = {Q%/} is replaced with a Fig.2: Social graph of who communicates
set of binary edge probabilities, @ = {p"/}. with whom in the Enron corpus

MAG with latent attributes (MAG-L1, MAG-L2, MAG-L3): The MAG model al-
lows for modelling the graph structure using latent attributes. These models ignore the
discrete label provided in the input graph and instead learn a set of latent binary at-
tributes to describe the graph structure. Parameters for the latent attributes were learned
using MAGFIT [10]. The model is sensitive to the number of latent attributes, so we
repreated the experiments with 1, 2 and 3 attributes.

As these models do not generate weighted graphs, we set the weight of the edges in
the generated graphs to the mean edge weight in the input graph (25.892). This ensures
that statistics such as average degree strength are not skewed by unweighted edges.

To evaluate the closeness of fit of each model, we use the following statistics:
Degree Strength: For an unweighted graph, one of the most important measures is the
degree distribution (the number of in-edges and out-edges of each vertex). Real-world
graphs tend to have heavy-tailed power-law or log-normal degree distributions [4, 15].
For a weighted graph, we generalise the concept of vertex degree to vertex strength [8]:

Su = Z Wuy €))
v£u

For each generated graph, we plot a CDF of the in-strength, out-strength and total
strength of each vertex.
Spectral Properties: We use Singular Value Decomposition (SVD) to calculate the
singular values and singular vectors of the graph’s adjacency matrix, which act as a
signature of the most important features of the graph structure. In an unweighted graph,
the adjacency matrix contains binary values, for “edge” or “no edge”. In a weighted
graph, the adjacency matrix contains the edge weights (with 0 indicating no edge). For
SVD UZV, we plot CDFs of the singular values X and the components of the left
singular vector U corresponding to the highest singular value.
Clustering Coefficients: the clustering coefficient C is an important measure of com-
munity structure. It measures the density of triangles in the graph, or the probability

@ President
® CEO

© MD
(CAY3

O Director
© Manager
O Employee
O Trader

@ Lawyer

o 6 61 8

cycle __ middleman __ n __ out __

sz - Wuvz - Wuvz - Wuvz -

1 1 1 1 1 1 1 1 l 1 1 1

Wiz - Wiy - Wiy Wity - Wi - W3y Wi Wiy Wi Wiy - Witz - W3y
(a) Cycle (b) Middleman (¢) In (d) Out

Fig. 3: Triad Patterns in a Directed Graph

that two neighbours of a vertex are themselves neighbours [15]. We extend the notion
of clustering coefficients to weighted, directed graphs using the equation in [8]:

1

Wi (W,

G =
20di(di = 1) = 2d,7]

“

where C, is the weighted clustering coefficient for vertex u, W, is the weighted ad-
jacency matrix for u and its neighbours, W' is the transpose of W, d'* is the total
degree of a vertex (the sum of its in- and out-degrees) and d” is the number of bilateral
edges in u (the number of neighbours of # which have both an in-edge and an out-edge
between themselves and u).
Triad Participation: Closely related to the clustering coefficient is the concept of tri-
angle or triad participation. The number of triangles that a vertex is connected to is a
measure of transitivity [15]. In a directed graph, the triangles have a different interpre-
tation depending on the edge directions. There are four types of triangle pattern [8], as
shown in Fig. 3. To generalise the concept of triad participation to weighted, directed
graphs, we consider each of the four triangle types separately, and sum the total strength
of the edges in each triad:

tl,}l) = Z Wuvz &)

v,2EW, \u

where y = {cycle,middleman,in,out} is the triangle type and W5,, is calculated as
shown in Fig. 3 for each triangle type y.

To give a more objective measure of the closeness of fit between the generated
graphs and the input graph, we use a Kolmogorov-Smirnov (KS) test and the L2 (Eu-
clidean) distance between the CDFs for each statistic. As the CDFs are for heavy-tailed
distributions, we use the logarithmic variants of these measures [10]. The KS and L2

statistics are calculated as:
KS(D1,D3) = maxy|log D (x) —log Da(x)| (6)

b
L2(D1,D2)—\/logb foga Zlong) —logDa(x))? @)

where [a, b] is the support of distributions D; and D;.

The model that generates graphs with the lowest KS and L2 values for each of the
statistics discussed above has the closest fit to the real-world graph. The results are
presented in the next section.

5 Results

For each of the six models (AGWAN, MAG-R1, MAG-L1, MAG-L2, MAG-L3, ER), we
generated 10 random graphs and calculated statistics for each. The plots of the averaged
CDFs of the 10 graphs for each model are shown in Fig.s 4-7. The closeness of fit of
each CDF (KS and L2 statistics) are shown in Tables 1-2.
Vertex Strength (Fig. 4): AGWAN successfully models the in-strength and out-strength
of the input graph with high accuracy, significantly better than any of the other ap-
proaches. AGWAN successfully predicts the heavy-tailed vertex strength distribution
(small number of high-strength vertices and large number of low-strength vertices).
Spectral Properties (Fig. 5): Fig. 5a shows that while AGWAN’s singular values are
not absolutely the closest to the values from the real graph, the shape of the distribution
follows the real graph more closely than any of the other approaches. Fig. 5b shows that
the components of the primary left singular vector map very closely to the real graph.
Thus the spectral properties of the AGWAN graphs are very realistic, while the other
models have singular vectors not much closer than random.
Clustering Coefficients (Fig. 6): The clustering coefficients map very closely to those
from MAG-R1, outperforming it by only a small margin. Both approaches are outper-
formed by MAG-L1 for the In-Coefficient and MAG-L2 for the Out-Coefficient. It is
interesting that there is no clear winner overall for clustering properties.
Triad Participation (Fig. 7): Triad participation is closely related to clustering, so it
is not suprising to find similar results: the results for AGWAN and MAG-R1 are very
similar, but MAG-L2 appears to model the real-world triad participation most closely.
Our results demonstrate that AGWAN produces an accurate model of the properties
of a weighted real-world graph, significantly outperforming the unweighted approach
(MAG-R1) across the statistics measured. It is interesting to note that for vertex strength
and spectral qualities, AGWAN performs much better than the MAG latent approaches,
whereas for clustering and triad participation, the latent approaches perform better. It
is likely that the attributes in MAG-L2 and MAG-L3 are modelling different aspects
of the graph structure (e.g. homophily and core-periphery). One of the findings in [10]
was that “Simplified MAG” (where all attributes are the same) could not model the
clustering property, implying that clustering cannot be accurately modelled using a sin-
gle attribute. We propose to extend our model to more than one attribute as outlined in
§3.3 to investigate whether this produces a more accurate model of clustering.

6 Conclusions

We presented AGWAN, a model for random graphs with discrete labels and weighted
edges. We proposed a fitting algorithm to learn a model of graph edge weights from
real-world data, and a generative algorithm to generate random graphs with similar
characteristics to the real-world graph. We measured the closeness of fit of our gen-
erated graphs to the input graph over a range of graph statistics, and compared our

Clustering Coefficient (CCDF)

No. of Vertices (CCDF)

Singular Value (CDF)
w

o

IS

N

0 10
o | T s T T] TRV <
0 & 10
Q
Q
(%3
1 Q 1
0 1 210 ¢
o
>
=
]
o Real-world graph| S .0 Real-world graphl|
0" f - - = AGWAN q = 10"} - - - AGWAN
MAG Real 1 \ MAG Real 1
—— MAG Latent 1 i —— MAG Latent 1 !
- - - MAG Latent 2 v - - - MAG Latent 2 !
-~ MAG Latent 3 - - - MAG Latent 3 !
|L--ER . - i
0 1 - 2 : 3 4 10 0 ;i 1 - 2 - 3 4 5
10 10 10 10 10 10 10 10 10 10
Vertex Strength Vertex Strength
(a) In-Strength (b) Out-Strength
Fig. 4: Vertex Strength Distribution
x10*
Real-world graph 12r
' - AGWAN Real-world graph|
\ MAG Real 1 ok . MA‘{;’;{:N |
N et 0 e
- = MAG Laent T a Laemts

- - ER

T 10 T
[y
[a]
Q
1 g 1
10 k! +— 10
c
0
°
@
Q
O
0 D 0
10 k! £ 10 '
Real-world graph| N 5 Real-world graph| V!
- - - AGWAN L 5 - - - AGWAN .
MAG Real 1 R 3 MAG Real 1 o
—— MAG Latent 1 i IS MAG Latent 1
- - - MAG Latent 2 [MAG Latent 2 !
-~ MAG Latent 3 [MAG Latent 3 !
107 == ‘ - L ‘ :
0 1 2 0
10 10 10

(@)

Singular Values

Primary Left Singular Vector Components (CDF)

80 100
Rank

60

120 140 160

(b) Primary Left Singular Vector

Fig. 5: Spectral Properties

10
Vertex In-degree

(a) In-edges

10'
Vertex Out-degree

(b) Out-edges

Fig. 6: Clustering Coefficients

No. of Participating Vertices

No. of Participating Vertices

T T T T 10 T T T
(%}
8 -------
? 1 107}
(]
>
jo2}
£
' I - T
o
g
©
o
o Real-world graph Y S o Real-world graph|
=== AGWAN \? E| . 107 H- - - AGWAN
MAG Real 1 1 o MAG Real 1 \
—— MAG Latent 1 1 z ——MAG Latent 1 \
— - - MAG Latent 2 5 — - - MAG Latent 2 i \
— - MAG Latent 3 11 ~ — MAG Latent 3 v \
-1 - - ER T L L | 10" - - ER T L \‘l
10° 10’ 10° 10° 10* 10° 10' ? 10° 10° 10
Total Triad Strength Total Triad Strength
(a) Cycles (b) Middlemen
3 103
(%]
_______ g — wom
2 | 2 2L o
]
>
=3
£
1] g 10' b
.8
©
o
0 Real-world graph| ' S .0 Real-world graph| |
- - = AGWAN Y 1 . 100 H - - - AGWAN o
MAG Real 1 L 1] MAG Real 1]
—— MAG Latent 1 ! \ z —— MAG Latent 1 .
~ - - MAG Latent 2 vt ! ~ - - MAG Latent 2 o
- - MAG Latent3 ot ! - - MAG Latent3 I
10' ? 10° 10° 10° 10° 10' 10° 10° 10° 10
Total Triad Strength Total Triad Strength
(c) Ins (d) Outs
Fig.7: Triad Participation
AGWAN MAG-R1 MAG-L1 MAG-L2 MAG-L3 ER
In-Strength 1.455 4.700 4.942 4.942 5.438 2.469
Out-Strength 2.303 2.659 4.942 4.605 5.247 2.708
Singular Values 34894 35.752 35.838 34.666 30.049 37.235
Singular Vector 0.282 1.801 1.691 1.460 1.520 1.915
Clustering Coefficient (In) 2.220 2.208 0.348 3.406 3.821 3.444
Clustering Coefficient (Out) 0.702 0769 2.956 0.411 4.628 3.728
Triad Participation (Cycles) 3.555 4.248 4248 0.698 4.174 4.787
Triad Participation (Middlemen) 4.500 4.500 3.807 2.303 3.584 4.382
Triad Participation (Ins) 2.436 4.500 2.457 2.996 5.075 4.700
Triad Participation (Outs) 4.248 4094 2436 0.729 4443 4.382
Table 1: Kolmogorov-Smirnoff statistic for CDFs in Fig.s 4-7
AGWAN MAGRI MAGLI MAGL2 MAGL3 _ ER
In-Strength 1.816 4.912 4.015 4.744 10.452 5.679
Out-Strength 2117 3.534 3.252 3.420 5.188 5.100
Singular Values 18.360 19.546 19.405 17.931 19.262 25.044
Singular Vector 0.988 7.587 7.609 6.973 7.273 7.316
Clustering Coefficient (In) 1.528 1.607 0.958 2226 7.175 3.528
Clustering Coefficient (Out) 1.002 1.191 2.802 0.690 4716 3.145
Triad Participation (Cycles) 3.101 3.000 2.053 1.625 5.180 3.823
Triad Participation (Middlemen) 4.207 4178 2.406 2465 6592 5.144
Triad Participation (Ins) 4332 4826 2166 2524 8922 4.630
Triad Participation (Outs) 3.203 3205 1.819 1.791 4864 3.727

Table 2: L2 statistic for CDFs in Fig.s 4-7

approach to the state-of-the-art in random graph generative algorithms. AGWAN was
found to model vertex strength distributions and singular vectors much more closely
than the other approaches.

The measures of clustering and triad participation are much better than random and
better than MAG with real attributes, but not as good as MAG with two latent attributes.
This suggests that edge weights make some contribution to clustering, but clustering
cannot be accurately modelled with a single vertex label. The MAG latent approach
can assign different structural processes (homophily, core-periphery, etc.) to each label,
and the clustering property arises from the combination of labels. We propose to extend
AGWAN to multiple vertex labels to investigate the effect on clustering.

As discussed in §3.3, MAG’s method of combining multiple vertex attributes is
unsatisfactory when applied to real attributes, due to the assumption of independence
and the limit on the number of attributes which can be modelled. We have proposed a
future line of research based on a weighted summation of the GMM for each edge. The
fitting algorithm would need to regularise the individual contributions of each edge to
take account of dependencies. The complexity of modelling the full joint distribution
could be reduced with an approach based on Markov Random Fields or Factor Graphs.

References

1. Akoglu, L., McGlohon, M., Faloutsos, C.: OddBall: Spotting anomalies in weighted graphs.
In: PAKDD 2010, Hyderabad, India (2010)
2. Barabdsi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439),
509-512 (1999)
3. Blei, D.M., Jordan, M.I.: Variational inference for dirichlet process mixtures. Bayesian Anal-
ysis 1, 121-144 (2005)
4. Chakrabarti, D., Faloutsos, C.: Graph Mining: Laws, Tools, and Case Studies. Synthesis
Lectures on Data Mining and Knowledge Discovery, Morgan & Claypool Publishers (2012)
5. Davis, M., Liu, W., Miller, P.: Finding the most descriptive substructures in graphs with
discrete and numeric labels. In: NFMCP, pp. 138-154. Springer (2013)
6. Eichinger, F., Huber, M., Bohm, K.: On the usefulness of weight-based constraints in fre-
quent subgraph mining. In: ICAI 2010. pp. 65-78. BCS SGAI (Dec 2010)
7. Erdés, P., Rényi, A.: On the evolution of random graphs. Publication of the Mathematical
Institute of the Hungarian Academy of Sciences 5, 17-61 (1960)
8. Fagiolo, G.: Clustering in complex directed networks. Physical Review E 76(2) (Aug 2007)
9. Figueiredo, M.A., Jain, A.: Unsupervised learning of finite mixture models. Pattern Analysis
and Machine Intelligence, IEEE Transactions on 24(3), 381-396 (2002)
10. Kim, M., Leskovec, J.: Modeling social networks with node attributes using the Multiplica-
tive Attribute Graph model. In: UAI 2011, Barcelona, Spain. pp. 400-409 (2011)
11. Kim, M., Leskovec, J.: Multiplicative Attribute Graph model of real-world networks. Internet
Mathematics 8(1-2), 113-160 (2012)
12. Kurihara, K., Welling, M., Vlassis, N.: Accelerated variational dirichlet process mixtures. In:
NIPS (2006)
13. Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C., Ghahramani, Z.: Kronecker
graphs: An approach to modeling networks. JMLR 11, 985-1042 (2010)
14. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking di-
ameters. ACM Trans. Knowl. Discov. Data 1(1) (Mar 2007)
15. Newman, M.: Networks: An Introduction. OUP, New York, NY, USA (2010)

